Chemistry, physics, computation, theory, aerosolized acid-base nanoparticles, machine learning


Background & Research Interest
Our group uses computational and theoretical methods to study nanoparticles formed through atmospheric processes. We study the structural, thermal, electronic and spectral properties of the products of redox and acid-base reactions formed as the result of atmospheric NOx/SOx pollution, in an effort to help eludicate their fates in the environment. Our group has recently developed TransRot, a freely available simulated annealing Monte Carlo program designed to find minimum-energy structures of atomic and molecular nanoparticles. We are very interested in working collaboratively with experimentalists and theorists at other institutions.